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Abstract

A linear pentapyrrole bearing�-hydroxymeythyl group in the terminal was synthesized by the stepwise coupling
of �-free pyrrole with azafulvenium ion6. When it was treated with a catalytic amount ofp-toluensulfonic acid
under anaerobic condition, followed by aerial oxidation of the products, a statistical mixture of uroporphyrin I–IV
octamethyl esters was obtained. It is proposed that this transformation proceeds through a spiro-pyrrolenine as a
key intermediate. © 2000 Elsevier Science Ltd. All rights reserved.
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Hydroxymethylbilane (1; HMB), constructed by assembling four molecules of porphobilinogen (PBG)
with loss of four molecules of ammonia in the presence of deaminase, acts as the substrate for a second
enzyme (cosynthetase) which cyclizes the bilane with concomitant intramolecular rearrangement of the
terminal ring-D to generate uroporphyrinogen III (3; uro’gen III).1,2 The spiro-pyrrolenine2 is a most
favorite intermediate, since the corresponding ring-D lactam4 has been shown to function as an inhibitor
of cosynthetase.3–6
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Based on biosynthetic mechanism of uroporhyrinogen III, we undertook the synthesis of linear
pentapyrrole derivative bearing terminal azafulvenium chromophore21, which would be a model for the
natural intermediate in rearrangement. The synthetic strategy of precursor17 was based on our previous
work of pyrromethane synthesis under neutral conditions: treatment of 2-mercaptobenzothiazolylmethyl-
pyrrole 5 in dry benzene with silver (I) trifrate generates the azafulvenium ion6,7 which condenses
with �-free pyrrole7 to give pyrromethane8 in excellent yield. Pyrromethane8 was converted to�-
free tripyrrole10 by deprotection of trichloroethyl ester8 and decarboxylation of9. Coupling of10

Scheme 1.Reagents and conditions: (a) AgOTf–Na2HPO4/benzene, 10 min, 97.3%; (b) Zn/80% AcOH–THF, 3 h, 97.3%; (c)
AcOH/135°C, Ar, 10 min, 83.3% (90.5%); (d) in CH3CN, 1 h, 71.9% (97.2%); (e) Zn/80% AcOH–THF, 3 h, 84.8% (98.0%);
(f) AcOH/135°C, Ar, 2 min, 52.0% (95.0%); (g) in CH3CN, 1 h, 53.3% (91.4%); (h) Zn/80% AcOH–THF, 3 h, 76.5% (90.9%);
(i) AcOH/135°C, Ar, 1 min, 21.5% (82.0%); (j) in CH3CN, 1 h, 52.9% (63.6%); (k) 0.1 N KOH–MeOH/CH2Cl2-MeOH (1:1),
15 min, 63.4% (70.3%); (l) 2-mercaptothiazole/DCC–DMAP/CH2Cl2, 4 h, 65.5% (85.6%); (m) NaBH4/CH2Cl2-MeOH (2:1),
10 min, SiO2 short column/CH2Cl2-MeOH (100:3)
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Fig. 1. The Me ester regions of acetic acid (AMe) and propionic acid (PMe) side chain of the 400 MHz NMR spectra (CDCl3),
involved in the isomers of uroporphyrin octamethyl ester, are described. [A] is the spectrum of a mixture of uroporphyrin
octamethyl esters obtained from20 and [B] is the spectrum of a statistical mixture of uroporphyrin octamethyl esters of type I,
II, III and IV (1:1:4:2): markeda=III (1.5H); b=I (1.5H)+IV (1.5H);c=III (1.5H); d=IV (1.5H); e=III (3H); f=II (1.5H)

with azafluvenium ion6 in dry acetonitrile proceeded smoothly at room temperature to give11 in
high yield. Similar deprotection of ester11 and decarboxylation of12 followed by coupling reaction
of 13 with 6 produced tetrapyrrole14 as shown in Scheme 1.8 In the same way,14 was transformed to
the desired linear pentapyrrole17 through carboxylic acid15 and�-free pyrrole derivative16 even in
low yield. Finally, conversion of methylsulfonylethyl ester moiety of17 to hydroxymethyl function was
performed by alkaline hydrolysis of17 to give 18, which was followed by formation of amide with 2-
mercaptothiazoline and selective reduction with sodium borohydride in dichloromethane–methanol (2:1),
giving rise to unstable�-hydroxymethylpentapyrrole derivative20.9

To a solution of 20 (6.2 mg) in dichloromethane (3 ml) was added a cataytic amount ofp-
toluenesulfonic acid (0.1 mg) and the mixture was stirred at room temperature under argon atmosphere
for 20 h. A large amount of powdered sodium acetate was added to the mixture which was further stirred
for 1 h under oxygen atmosphere for oxidation of the products. The major product (2.2 mg), separated
from the mixture on silica gel TLC (CH2Cl2:MeOH 100:3), was characterized as a statistical mixture of
four isomers of urophorphyrin octamethyl esters (I:II:III:IV=1:1:4:2).1H NMR spectrum of the product
between 3.67–3.85 ppm was absolutely identical with that of an authentic sample as shown in Fig. 1.

We propose that�-hydroxymethyl-pentapyrrole derivative20 is dehydrated under acidic conditions to

Scheme 2.
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generate the pentapyrrole21bearing azafulvenium chromophore in the terminal position of the molecule.
As illustrated in Scheme 2, compound21will then cyclize in two ways, to afford22and23, the precursor
of uro’gen I and uro’gen III octamethyl ester, respectively, during formation of the mixture of uro’gen
IIV octamethyl esters as discussed in the previous paper.10 It is obvious that one of a possible route in
the transformation from20 to uro’gen III octamethyl ester involves azafulvene21 and spiro-pyrrolenine
intermediate23. This process is a model for the biosynthetic pathway from HMB1 to uro’gen III3.
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