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Synthesis of a linear -hydroxymethyl-pentapyrrole derivative
and its cyclization to uroporphyrinogens
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Abstract

A linear pentapyrrole bearing-hydroxymeythyl group in the terminal was synthesized by the stepwise coupling
of -free pyrrole with azafulvenium iof. When it was treated with a catalytic amountpsfoluensulfonic acid
under anaerobic condition, followed by aerial oxidation of the products, a statistical mixture of uroporphyrin -1V
octamethyl esters was obtained. It is proposed that this transformation proceeds through a spiro-pyrrolenine as a
key intermediate. © 2000 Elsevier Science Ltd. All rights reserved.
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HydroxymethylbilaneX; HMB), constructed by assembling four molecules of porphobilinogen (PBG)
with loss of four molecules of ammonia in the presence of deaminase, acts as the substrate for a second
enzyme (cosynthetase) which cyclizes the bilane with concomitant intramolecular rearrangement of the
terminal ring-D to generate uroporphyrinogen B (iro’gen 111).12 The spiro-pyrrolening is a most
favorite intermediate, since the corresponding ring-D lactdras been shown to function as an inhibitor
of cosynthetas@:®
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Based on biosynthetic mechanism of uroporhyrinogen Ill, we undertook the synthesis of linear
pentapyrrole derivative bearing terminal azafulvenium chromopkrevhich would be a model for the
natural intermediate in rearrangement. The synthetic strategy of predira@s based on our previous
work of pyrromethane synthesis under neutral conditions: treatment of 2-mercaptobenzothiazolylmethyl-
pyrrole 5 in dry benzene with silver (I) trifrate generates the azafulvenium@@dnwhich condenses

with

-free pyrrole7 to give pyrromethan® in excellent yield. Pyrrometharwas converted to -

free tripyrrole 10 by deprotection of trichloroethyl est& and decarboxylation 0. Coupling of10
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Scheme 1Reagents and conditiong&) AgOT—NaHPQO,/benzene, 10 min, 97.3%; (b) Zn/80% AcOH-THF, 3 h, 97.3%; (c)
AcOH/135°C, Ar, 10 min, 83.3% (90.5%); (d) in GBN, 1 h, 71.9% (97.2%); (e) Zn/80% AcOH-THF, 3 h, 84.8% (98.0%);
(f) AcOH/135°C, Ar, 2 min, 52.0% (95.0%); (g) in GEN, 1 h, 53.3% (91.4%); (h) Zn/80% AcOH-THF, 3 h, 76.5% (90.9%);
(i) AcOH/135°C, Ar, 1 min, 21.5% (82.0%); (j) in CGI€N, 1 h, 52.9% (63.6%); (k) 0.1 N KOH-MeOH/GBI,-MeOH (1:1),

15 min, 63.4% (70.3%); (I) 2-mercaptothiazole/DCC-DMAPKCH, 4 h, 65.5% (85.6%); (m) NaBHCH,Cl,-MeOH (2:1),

10 min, SiQ short column/CHCI,-MeOH (100:3)
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Fig. 1. The Me ester regions of acetic achkd¥¢) and propionic acidf@Me) side chain of the 400 MHz NMR spectra (CREI
involved in the isomers of uroporphyrin octamethyl ester, are descrilddds [the spectrum of a mixture of uroporphyrin
octamethyl esters obtained fra20 and B] is the spectrum of a statistical mixture of uroporphyrin octamethyl esters of type I,
I1, Il and IV (1:1:4:2): markeda=Ill (1.5H); b=1 (1.5H)+IV (1.5H);c=I1I (1.5H); d=IV (1.5H); e=IlI (3H); f=II (1.5H)

with azafluvenium ion6 in dry acetonitrile proceeded smoothly at room temperature to fiven
high yield. Similar deprotection of est&ll and decarboxylation 012 followed by coupling reaction

of 13 with 6 produced tetrapyrrolé4 as shown in Scheme®lin the same way]4 was transformed to
the desired linear pentapyrrole through carboxylic acid5 and -free pyrrole derivativel6 even in
low yield. Finally, conversion of methylsulfonylethyl ester moietylagfto hydroxymethyl function was
performed by alkaline hydrolysis df7 to give 18, which was followed by formation of amide with 2-
mercaptothiazoline and selective reduction with sodium borohydride in dichloromethane—methanol (2:1),
giving rise to unstable -hydroxymethylpentapyrrole derivatize.’

To a solution of20 (6.2 mg) in dichloromethane (3 ml) was added a cataytic amounp- of
toluenesulfonic acid (0.1 mg) and the mixture was stirred at room temperature under argon atmosphere
for 20 h. A large amount of powdered sodium acetate was added to the mixture which was further stirred
for 1 h under oxygen atmosphere for oxidation of the products. The major product (2.2 mg), separated
from the mixture on silica gel TLC (C¥Clo:MeOH 100:3), was characterized as a statistical mixture of
four isomers of urophorphyrin octamethyl esters (1:11:111:1V=1:1:4:31 NMR spectrum of the product
between 3.67-3.85 ppm was absolutely identical with that of an authentic sample as shown in Fig. 1.

We propose that -hydroxymethyl-pentapyrrole derivati&®is dehydrated under acidic conditions to
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generate the pentapyrrdé bearing azafulvenium chromophore in the terminal position of the molecule.
As illustrated in Scheme 2, compoudiwill then cyclize in two ways, to affor@2 and23, the precursor

of uro’gen | and uro’gen Il octamethyl ester, respectively, during formation of the mixture of uro’gen
IV octamethyl esters as discussed in the previous ppéiis obvious that one of a possible route in
the transformation fror20 to uro’gen Il octamethyl ester involves azafulve2ieand spiro-pyrrolenine
intermediate23. This process is a model for the biosynthetic pathway from HMB uro’gen 111 3.
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